The Grothendieck-Teichmüller group as an open subgroup of the outer automorphism group of the étale fundamental group of a configuration space (joint work with Yuichiro Hoshi and Shinichi Mochizuki)

Arata Minamide
RIMS, Kyoto University

$$
\text { July 7, } 2021
$$

§1 Introduction

k : an algebraically closed field of characteristic zero
$X \stackrel{\text { def }}{=} \mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}$
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}(i \neq j)\right\} \quad$ (the n-th conf. sp)

§1 Introduction

k : an algebraically closed field of characteristic zero
$X \stackrel{\text { def }}{=} \mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}$
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}(i \neq j)\right\} \quad$ (the n-th conf. sp)
$\xrightarrow{\sim} \mathcal{M}_{0, n+3}$: the moduli space $/ k$ of smooth proper curves of genus zero with $n+3$ ordered marked points

§1 Introduction

k : an algebraically closed field of characteristic zero
$X \stackrel{\text { def }}{=} \mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}$
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}(i \neq j)\right\} \quad$ (the n-th conf. sp)
$\xrightarrow{\sim} \mathcal{M}_{0, n+3}$: the moduli space ${ }_{/ k}$ of smooth proper curves of genus zero with $n+3$ ordered marked points
\Longrightarrow we have a natural action of the symm. gp \mathfrak{S}_{n+3} on X_{n}.

§1 Introduction

k : an algebraically closed field of characteristic zero
$X \stackrel{\text { def }}{=} \mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}$
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}(i \neq j)\right\} \quad$ (the n-th conf. sp)
$\xrightarrow{\sim} \mathcal{M}_{0, n+3}$: the moduli space ${ }_{/ k}$ of smooth proper curves of genus zero with $n+3$ ordered marked points
\Longrightarrow we have a natural action of the symm. gp \mathfrak{S}_{n+3} on X_{n}.
Π_{n} : the étale fundamental group of X_{n}

§1 Introduction

k : an algebraically closed field of characteristic zero
$X \stackrel{\text { def }}{=} \mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}$
$X_{n} \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}(i \neq j)\right\} \quad$ (the n-th conf. sp)
$\xrightarrow{\sim} \mathcal{M}_{0, n+3}$: the moduli space $/ k$ of smooth proper curves of genus zero with $n+3$ ordered marked points
\Longrightarrow we have a natural action of the symm. gp \mathfrak{S}_{n+3} on X_{n}.
Π_{n} : the étale fundamental group of X_{n}
Note: Since X_{n} is defined over \mathbb{Q}, we have

$$
G_{\mathbb{Q}} \stackrel{\text { def }}{=} \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \hookrightarrow \operatorname{Out}\left(\Pi_{n}\right) .
$$

Drinfeld and Ihara defined a certain explicit subgroup

$$
\widehat{\mathrm{GT}} \subseteq \operatorname{Aut}(\widehat{\mathbb{Z}} * \widehat{\mathbb{Z}})
$$

called the (profinite) Grothendieck-Teichmüller group, such that

Drinfeld and Ihara defined a certain explicit subgroup

$$
\widehat{\mathrm{GT}} \subseteq \operatorname{Aut}(\widehat{\mathbb{Z}} * \widehat{\mathbb{Z}}),
$$

called the (profinite) Grothendieck-Teichmüller group, such that there exists a commutative diagram

Drinfeld and Ihara defined a certain explicit subgroup

$$
\widehat{\mathrm{GT}} \subseteq \operatorname{Aut}(\widehat{\mathbb{Z}} * \widehat{\mathbb{Z}}),
$$

called the (profinite) Grothendieck-Teichmüller group, such that there exists a commutative diagram

Open problem: Is $G_{\mathbb{Q}} \hookrightarrow \widehat{\mathrm{GT}}$ an isomorphism?

Main Theorem (Hoshi-M.-Mochizuki)
Suppose that $n \geq 2$.
Then the natural outer actions of $\widehat{\mathrm{GT}}$ and \mathfrak{S}_{n+3} on Π_{n} induce

$$
\widehat{\mathrm{GT}} \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right) .
$$

Main Theorem (Hoshi-M.-Mochizuki)
Suppose that $n \geq 2$.
Then the natural outer actions of $\widehat{\mathrm{GT}}$ and \mathfrak{S}_{n+3} on Π_{n} induce

$$
\widehat{\mathrm{GT}} \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right) .
$$

Note: If $G_{\mathbb{Q}} \xrightarrow{\sim} \widehat{\mathrm{GT}}$, then we have $G_{\mathbb{Q}} \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)$.

Main Theorem (Hoshi-M.-Mochizuki)
Suppose that $n \geq 2$.
Then the natural outer actions of $\widehat{\mathrm{GT}}$ and \mathfrak{S}_{n+3} on Π_{n} induce

$$
\widehat{\mathrm{GT}} \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right) .
$$

Note: If $G_{\mathbb{Q}} \xrightarrow{\sim} \widehat{\mathrm{GT}}$, then we have $G_{\mathbb{Q}} \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)$.

Corollary (Hoshi-M.-Mochizuki)
Suppose that $n \geq 2$.
(i) $\mathfrak{S}_{n+3}=Z^{\text {loc }}\left(\operatorname{Out}\left(\Pi_{n}\right)\right) \stackrel{\text { def }}{=} \underset{\longrightarrow}{\lim }{ }_{S}^{\text {op }} \operatorname{Out}\left(\Pi_{n}\right) \quad Z_{\operatorname{Out}\left(\Pi_{n}\right)}(H)$.
(ii) $\widehat{\mathrm{GT}}=Z_{\operatorname{Out}\left(\Pi_{n}\right)}\left(\Im_{n+3}\right)=Z_{\operatorname{Out}\left(\Pi_{n}\right)}\left(Z^{\operatorname{loc}}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)\right)$.

Note: Thus, we obtain a purely gp-theoretic algorithm $\Pi_{n} \rightsquigarrow \widehat{\mathrm{GT}}$.

Note: Thus, we obtain a purely gp-theoretic algorithm $\Pi_{n} \rightsquigarrow \widehat{\text { GT }}$.
Main Theorem \Longrightarrow Corollary

Note: Thus, we obtain a purely gp-theoretic algorithm $\Pi_{n} \rightsquigarrow \widehat{\mathrm{GT}}$.
Main Theorem \Longrightarrow Corollary
(i) Since $\widehat{\mathrm{GT}} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ is open, $\mathfrak{S}_{n+3} \subseteq Z^{\operatorname{loc}}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$ is clear.

Note: Thus, we obtain a purely gp-theoretic algorithm $\Pi_{n} \rightsquigarrow \widehat{\mathrm{GT}}$.
Main Theorem \Longrightarrow Corollary
(i) Since $\widehat{\mathrm{GT}} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ is open, $\mathfrak{S}_{n+3} \subseteq Z^{\operatorname{loc}}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$ is clear. Let $\sigma \in Z^{\mathrm{loc}}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$.

Note: Thus, we obtain a purely gp-theoretic algorithm $\Pi_{n} \rightsquigarrow \widehat{\mathrm{GT}}$.
Main Theorem \Longrightarrow Corollary
(i) Since $\widehat{\mathrm{GT}} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ is open, $\mathfrak{S}_{n+3} \subseteq Z^{\operatorname{loc}}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$ is clear. Let $\sigma \in Z^{\text {loc }}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$. We may assume WLOG that

$$
\sigma=a \cdot b \quad\left(a \in \widehat{\mathrm{GT}}, \quad b \in \mathfrak{S}_{n+3}\right)
$$

commutes with an open subgp $H \subseteq \widehat{\mathrm{GT}}$.

Note: Thus, we obtain a purely gp-theoretic algorithm $\Pi_{n} \rightsquigarrow \widehat{\text { GT }}$.
Main Theorem \Longrightarrow Corollary
(i) Since $\widehat{\mathrm{GT}} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ is open, $\mathfrak{S}_{n+3} \subseteq Z^{\text {loc }}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$ is clear. Let $\sigma \in Z^{\text {loc }}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$. We may assume WLOG that

$$
\sigma=a \cdot b \quad\left(a \in \widehat{\mathrm{GT}}, \quad b \in \mathfrak{S}_{n+3}\right)
$$

commutes with an open subgp $H \subseteq \widehat{\mathrm{GT}}$. Thus, we have

$$
a=\sigma \cdot b^{-1} \in Z_{\widehat{\mathrm{GT}}}(H) \stackrel{\mathrm{GC} / \mathrm{NF}}{=}\{1\}
$$

Note: Thus, we obtain a purely gp-theoretic algorithm $\Pi_{n} \rightsquigarrow \widehat{\text { GT }}$.
Main Theorem \Longrightarrow Corollary
(i) Since $\widehat{\mathrm{GT}} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$ is open, $\mathfrak{S}_{n+3} \subseteq Z^{\text {loc }}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$ is clear. Let $\sigma \in Z^{\text {loc }}\left(\operatorname{Out}\left(\Pi_{n}\right)\right)$. We may assume WLOG that

$$
\sigma=a \cdot b \quad\left(a \in \widehat{\mathrm{GT}}, \quad b \in \mathfrak{S}_{n+3}\right)
$$

commutes with an open subgp $H \subseteq \widehat{\mathrm{GT}}$. Thus, we have

$$
a=\sigma \cdot b^{-1} \in Z_{\widehat{\mathrm{GT}}}(H) \stackrel{\mathrm{GC} / \mathrm{NF}}{=}\{1\}
$$

(ii) This follows immediately from the center-freeness of \mathfrak{S}_{n+3}.

§2 Related works

$\overline{\mathcal{M}}_{0, n+3}$: the Deligne-Mumford compactification of $\mathcal{M}_{0, n+3}$
\Longrightarrow Each irreducible component δ of $\overline{\mathcal{M}}_{0, n+3} \backslash \mathcal{M}_{0, n+3}$ determines the inertia subgroup $\mathbb{I}_{\delta} \subseteq \Pi_{n}$ (up to conj.)

§2 Related works

$\overline{\mathcal{M}}_{0, n+3}$: the Deligne-Mumford compactification of $\mathcal{M}_{0, n+3}$
\Longrightarrow Each irreducible component δ of $\overline{\mathcal{M}}_{0, n+3} \backslash \mathcal{M}_{0, n+3}$ determines the inertia subgroup $\mathbb{I}_{\delta} \subseteq \Pi_{n}$ (up to conj.)
$\operatorname{Out}^{b}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\sigma \in \operatorname{Out}\left(\Pi_{n}\right) \mid \sigma\left(\mathbb{I}_{\delta}\right) \sim \mathbb{I}_{\delta} \quad\left({ }^{\forall} \delta\right)\right\}$
("quasi-special" outer aut. — cf. works of Ihara and Nakamura)

§2 Related works

$\overline{\mathcal{M}}_{0, n+3}$: the Deligne-Mumford compactification of $\mathcal{M}_{0, n+3}$
\Longrightarrow Each irreducible component δ of $\overline{\mathcal{M}}_{0, n+3} \backslash \mathcal{M}_{0, n+3}$ determines the inertia subgroup $\mathbb{I}_{\delta} \subseteq \Pi_{n}$ (up to conj.)
$\operatorname{Out}^{b}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\sigma \in \operatorname{Out}\left(\Pi_{n}\right) \mid \sigma\left(\mathbb{I}_{\delta}\right) \sim \mathbb{I}_{\delta} \quad\left({ }^{\forall} \delta\right)\right\}$
("quasi-special" outer aut. — cf. works of Ihara and Nakamura)

Theorem (Harbater-Schneps)
We have

$$
\widehat{\mathrm{GT}} \xrightarrow{\sim} \operatorname{Out}^{\mathrm{b}}\left(\Pi_{n}\right) \cap Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right)\left(\subseteq \operatorname{Out}\left(\Pi_{n}\right)\right) .
$$

§2 Related works

$\overline{\mathcal{M}}_{0, n+3}$: the Deligne-Mumford compactification of $\mathcal{M}_{0, n+3}$
\Longrightarrow Each irreducible component δ of $\overline{\mathcal{M}}_{0, n+3} \backslash \mathcal{M}_{0, n+3}$ determines the inertia subgroup $\mathbb{I}_{\delta} \subseteq \Pi_{n}$ (up to conj.)
$\operatorname{Out}^{b}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\sigma \in \operatorname{Out}\left(\Pi_{n}\right) \mid \sigma\left(\mathbb{I}_{\delta}\right) \sim \mathbb{I}_{\delta} \quad\left({ }^{\forall} \delta\right)\right\}$
("quasi-special" outer aut. — cf. works of Ihara and Nakamura)

Theorem (Hoshi-M.-Mochizuki)
We have

$$
\widehat{\mathrm{GT}} \xrightarrow{\sim} \quad Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) \quad\left(\subseteq \operatorname{Out}\left(\Pi_{n}\right)\right)
$$

§3 Results from combinatorial anabelian geometry

Definition

Suppose that $n \geq 2$. Note that for any $1 \leq m<n$, the projection morphism $X_{n} \rightarrow X_{m}$ obtained by "forgetting $n-m$ factors" induces a surjection $\Pi_{n} \rightarrow \Pi_{m}$. We shall refer to

$$
\operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right)
$$

as a fiber subgroup of Π_{n} of length $n-m$.

§3 Results from combinatorial anabelian geometry

Definition

Suppose that $n \geq 2$. Note that for any $1 \leq m<n$, the projection morphism $\quad X_{n} \rightarrow X_{m}$ obtained by "forgetting $n-m$ factors" induces a surjection $\Pi_{n} \rightarrow \Pi_{m}$. We shall refer to

$$
\operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right)
$$

as a fiber subgroup of Π_{n} of length $n-m$.

Next, observe that the projections obt'd by "forgetting the last factors" induce a sequence of surjections

$$
\Pi_{n} \rightarrow \Pi_{n-1} \rightarrow \cdots \cdots \quad \rightarrow \Pi_{2} \rightarrow \Pi_{1} .
$$

Write $K_{m} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right), \Pi_{0} \stackrel{\text { def }}{=}\{1\}$. Then we have

$$
\{1\}=K_{n} \subseteq K_{n-1} \subseteq \cdots \subseteq K_{1} \subseteq K_{0}=\Pi_{n}
$$

Write $K_{m} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right), \Pi_{0} \stackrel{\text { def }}{=}\{1\}$. Then we have

$$
\{1\}=K_{n} \subseteq K_{n-1} \subseteq \cdots \subseteq K_{1} \subseteq K_{0}=\Pi_{n}
$$

Definition

$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is F -admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha(F)=F$ for ${ }^{\forall}$ fiber subgp $F \subseteq \Pi_{n}$. $\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is C-admissible $\stackrel{\text { def }}{\Leftrightarrow}$
(i) $\alpha\left(K_{m}\right)=K_{m} \quad(0 \leq m \leq n)$;
(ii) $\alpha: K_{m} / K_{m+1} \xrightarrow{\sim} K_{m} / K_{m+1}$ induces a bijection between the set of cuspidal inertia subgps $\subseteq K_{m} / K_{m+1}$.
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is FC-admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha$ is F-admissible and C-admissible.

Out ${ }^{\mathrm{F}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{F}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$
Out ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{FC}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$

Out ${ }^{\mathrm{F}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{F}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$
Out ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{FC}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$
Observe: $X_{n+1} \rightarrow X_{n}$ obt'd by "forgetting a factor" induces a hom

$$
\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)
$$

Out ${ }^{\mathrm{F}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{F}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$
Out ${ }^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{FC}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$
Observe: $X_{n+1} \rightarrow X_{n}$ obt'd by "forgetting a factor" induces a hom

$$
\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)
$$

Fact
(i) The above hom " \rightarrow " does not depend on the choice of a factor which we forget (cf. [CmbCsp]).
(ii) The above hom " \rightarrow " is injective (cf. [CmbCsp]).
(iii) Suppose that $n \geq 2$. Then we have Out ${ }^{\mathrm{FC}}\left(\Pi_{n}\right)=$ Out $^{\mathrm{F}}\left(\Pi_{n}\right)$ (cf. [CbTpII]).

$\S 4$ Outline of the proof of Main Theorem

In the present \S, we suppose that $n \geq 2$.
Definition
Note that for any $1 \leq m<n$, the projection morphism
$X_{n} \xrightarrow{\sim} \mathcal{M}_{0, n+3} \rightarrow \mathcal{M}_{0, m+3} \xrightarrow{\sim} X_{m}$ obtained by "forgetting $n-m$ marked pts" induces a surjection $\Pi_{n} \rightarrow \Pi_{m}$. We shall refer to

$$
\operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right)
$$

as a generalized fiber subgroup of Π_{n} of length $n-m$.

$\S 4$ Outline of the proof of Main Theorem

In the present \S, we suppose that $n \geq 2$.
Definition
Note that for any $1 \leq m<n$, the projection morphism
$X_{n} \xrightarrow{\sim} \mathcal{M}_{0, n+3} \rightarrow \mathcal{M}_{0, m+3} \xrightarrow{\sim} X_{m}$ obtained by "forgetting $n-m$ marked pts" induces a surjection $\Pi_{n} \rightarrow \Pi_{m}$. We shall refer to

$$
\operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{m}\right)
$$

as a generalized fiber subgroup of Π_{n} of length $n-m$.

Definition
$\alpha \in \operatorname{Aut}\left(\Pi_{n}\right)$ is gF -admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha(F)=F$ for ${ }^{\forall}$ generalized fiber subgp $F \subseteq \Pi_{n}$.

Out ${ }^{\mathrm{gF}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{gF}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$
Note: Since every fiber subgp is a generalized fiber subgp, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \subseteq \operatorname{Out}\left(\Pi_{n}\right)
$$

Out ${ }^{\mathrm{gF}}\left(\Pi_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{gF}\right.$-admissible automorphisms of $\left.\Pi_{n}\right\} / \operatorname{Inn}\left(\Pi_{n}\right)$
Note: Since every fiber subgp is a generalized fiber subgp, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \subseteq \operatorname{Out}\left(\Pi_{n}\right)
$$

Proposition 1 (Hoshi-M.-Mochizuki)
Let $\alpha \in \operatorname{Aut}\left(\Pi_{n}\right) ; F \subseteq \Pi_{n}$ a generalized fiber subgp of length $n-m$. The $\alpha(F)$ is a generalized fiber subgp of length $n-m$. In particular, α induces a permutation on the set

$$
\left\{\operatorname{Ker}\left(\Pi_{n} \xrightarrow{p r_{i}} \Pi_{n-1}\right)\right\}_{i=1,2, \ldots, n+3} .
$$

- whose cardinality is $n+3$ - of generalized fiber subgps of length 1.

Then we have

$$
\operatorname{Out}\left(\Pi_{n}\right) \xrightarrow[\text { Prop1 }]{ } \mathfrak{S}_{n+3}
$$

Then we have

$$
\operatorname{Out}\left(\Pi_{n}\right) \overbrace{\text { Prop1 }}^{\text {splitting (cf. } \mathfrak{S}_{n+3} \curvearrowright \mathcal{M}_{0, n+3} \text {) }} \mathfrak{S}_{n+3}
$$

Then we have

$$
\operatorname{Out}\left(\Pi_{n}\right) \xrightarrow{\text { splitting (cf. } \mathfrak{S}_{n+3} \curvearrowright \mathcal{M}_{0, n+3} \text {) }} \mathfrak{S}_{n+3} \longrightarrow 1
$$

Then we have

$$
1 \longrightarrow \operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \longrightarrow \operatorname{Out}\left(\Pi_{n}\right) \stackrel{\text { splitting (cf. } \left.\mathfrak{S}_{n+3} \curvearrowright \mathcal{M}_{0, n+3}\right)}{\longrightarrow} \mathfrak{S}_{n+3} \longrightarrow 1
$$

Then we have

$$
1 \longrightarrow \text { Out }^{\mathrm{gF}}\left(\Pi_{n}\right) \longrightarrow \operatorname{Out}\left(\Pi_{n}\right) \xrightarrow[\text { Prop1 }]{ } \mathfrak{S}_{n+3} \longrightarrow 1
$$

Proposition 2
It holds that

$$
\mathfrak{S}_{n+3} \subseteq Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathrm{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)\right)
$$

Then we have

$$
\text { splitting (cf. } \left.\mathfrak{S}_{n+3} \curvearrowright \mathcal{M}_{0, n+3}\right)
$$

$$
1 \longrightarrow \operatorname{Out}^{\mathrm{FF}}\left(\Pi_{n}\right) \longrightarrow \operatorname{Out}\left(\Pi_{n}\right) \xrightarrow[\text { Prop1 }]{ } \mathfrak{S}_{n+3} \longrightarrow 1
$$

Proposition 2
It holds that

$$
\mathfrak{S}_{n+3} \subseteq Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathrm{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)\right)
$$

Proof of Proposition 2

Then we have

$$
\text { splitting (cf. } \left.\mathfrak{S}_{n+3} \curvearrowright \mathcal{M}_{0, n+3}\right)
$$

$$
1 \longrightarrow \text { Out }^{\mathrm{FF}}\left(\Pi_{n}\right) \longrightarrow \operatorname{Out}\left(\Pi_{n}\right) \xrightarrow[\text { Prop1 }]{ } \mathfrak{S}_{n+3} \longrightarrow 1
$$

Proposition 2
It holds that

$$
\mathfrak{S}_{n+3} \subseteq Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathrm{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)\right)
$$

Proof of Proposition 2
Let $\sigma \in$ Out ${ }^{\mathrm{gF}}\left(\Pi_{n}\right)$. It suff. to show σ comm. w/ $\tau=(1,2) \in \mathfrak{S}_{n+3}$.

Then we have

$$
\text { splitting (cf. } \left.\mathfrak{S}_{n+3} \curvearrowright \mathcal{M}_{0, n+3}\right)
$$

$$
1 \longrightarrow \mathrm{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \longrightarrow \operatorname{Out}\left(\Pi_{n}\right) \underset{\text { Prop1 }}{ } \mathfrak{S}_{n+3} \longrightarrow 1
$$

Proposition 2
It holds that

$$
\mathfrak{S}_{n+3} \subseteq Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)\right)
$$

Proof of Proposition 2

Let $\sigma \in$ Out $^{\mathrm{gF}}\left(\Pi_{n}\right)$. It suff. to show σ comm. w/ $\tau=(1,2) \in \mathfrak{S}_{n+3}$.
\Longrightarrow The images of σ and $\tau \cdot \sigma \cdot \tau^{-1}$ via $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n-1}\right)$ coincide (cf. Fact, (i), (iii)).

Then we have

$$
\text { splitting (cf. } \left.\mathfrak{S}_{n+3} \curvearrowright \mathcal{M}_{0, n+3}\right)
$$

$$
1 \longrightarrow \operatorname{Out}^{\mathrm{tF}}\left(\Pi_{n}\right) \longrightarrow \operatorname{Out}\left(\Pi_{n}\right) \xrightarrow[\text { Prop1 }]{ } \mathfrak{S}_{n+3} \longrightarrow 1
$$

Proposition 2
It holds that

$$
\mathfrak{S}_{n+3} \subseteq Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)\right)
$$

Proof of Proposition 2

Let $\sigma \in$ Out $^{\mathrm{gF}}\left(\Pi_{n}\right)$. It suff. to show σ comm. w/ $\tau=(1,2) \in \mathfrak{S}_{n+3}$.
\Longrightarrow The images of σ and $\tau \cdot \sigma \cdot \tau^{-1}$ via $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n-1}\right)$ coincide (cf. Fact, (i), (iii)).
$\Longrightarrow \sigma=\tau \cdot \sigma \cdot \tau^{-1}$ (cf. Fact, (ii), (iii))

In light of Proposition 2, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right) .
$$

In light of Proposition 2, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)
$$

Observe: Since \mathfrak{S}_{n+3} is center-free, it holds that

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)=Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right)
$$

In light of Proposition 2, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)
$$

Observe: Since \mathfrak{S}_{n+3} is center-free, it holds that

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)=Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right)
$$

Therefore, we conclude that

$$
\left.\widehat{\mathrm{GT}} \xrightarrow{\sim} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \cap Z_{\mathrm{Out}\left(\Pi_{n}\right)}\right)\left(\mathfrak{S}_{n+3}\right) \quad(\mathrm{cf} .[\mathrm{HS}] ;[\mathrm{CmbCsp}])
$$

In light of Proposition 2, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)
$$

Observe: Since \mathfrak{S}_{n+3} is center-free, it holds that

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)=Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right)
$$

Therefore, we conclude that

$$
\begin{aligned}
\widehat{\mathrm{GT}} & \xrightarrow[\rightarrow]{\sim} \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \cap Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) & & \text { (cf. [HS }] ;[\mathrm{CmbCsp}]) \\
& =\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \cap Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) & & \text { (cf. Fact, (iii))}
\end{aligned}
$$

In light of Proposition 2, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)
$$

Observe: Since \mathfrak{S}_{n+3} is center-free, it holds that

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)=Z_{\operatorname{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right)
$$

Therefore, we conclude that

$$
\begin{array}{rlrl}
\widehat{\mathrm{GT}} & \xrightarrow[\rightarrow]{\rightarrow} \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \cap Z_{\operatorname{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) & & \text { (cf. [HS]; [CmbCsp]) } \\
& =\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \cap Z_{\operatorname{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) & & \text { (cf. Fact, (iii)) } \\
& =\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \cap \operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) &
\end{array}
$$

In light of Proposition 2, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)
$$

Observe: Since \mathfrak{S}_{n+3} is center-free, it holds that

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)=Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right)
$$

Therefore, we conclude that

$$
\begin{aligned}
\widehat{\mathrm{GT}} & \xrightarrow[\rightarrow]{\sim} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \cap Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) & \text { (cf. [HS }] ;[\mathrm{CmbCsp}]) \\
& =\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \cap Z_{\operatorname{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) & (\text { cf. Fact, (iii) }) \\
& =\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \cap \operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) & \\
& =\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) &
\end{aligned}
$$

In light of Proposition 2, we have

$$
\operatorname{Out}^{\mathrm{gF}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right)
$$

Observe: Since \mathfrak{S}_{n+3} is center-free, it holds that

$$
\mathrm{Out}^{\mathrm{gF}}\left(\Pi_{n}\right)=Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right)
$$

Therefore, we conclude that

$$
\begin{aligned}
& \left.\widehat{\mathrm{GT}} \xrightarrow{\sim} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \cap Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) \quad \text { (cf. [HS]; [CmbCsp] }\right) \\
& =\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \cap Z_{\mathrm{Out}\left(\Pi_{n}\right)}\left(\mathfrak{S}_{n+3}\right) \quad \text { (cf. Fact, (iii)) } \\
& =\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \quad \cap \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \\
& =\text { Out }^{\mathrm{gF}}\left(\Pi_{n}\right) \text {, } \\
& \text { hence that } \widehat{\mathrm{GT}} \times \mathfrak{S}_{n+3} \xrightarrow{\sim} \operatorname{Out}\left(\Pi_{n}\right) \text {. }
\end{aligned}
$$

Proof of Proposition 1

In the following, for simplicity, we assume that $n=2$.
For any profinite group \square, write $\square^{(l)}$ (resp. $\square^{\text {ab }}$) for the maximal pro-l quotient (resp. abelianization) of \square.

Proof of Proposition 1

In the following, for simplicity, we assume that $n=2$.
For any profinite group \square, write $\square^{(l)}$ (resp. $\square^{\text {ab }}$) for the maximal pro-l quotient (resp. abelianization) of \square.

Theorem (Nakamura)
Write $\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}$ for the graded Lie algebra over \mathbb{Q}_{l} assoc. to the lower central series of $\Pi_{2}^{(l)}$. Then we have

$$
\operatorname{Aut}\left(\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}\right) \cong \mathfrak{S}_{5} \times \mathbb{Q}_{l}^{\times}
$$

Proof of Proposition 1

In the following, for simplicity, we assume that $n=2$.
For any profinite group \square, write $\square^{(l)}$ (resp. $\square^{\text {ab }}$) for the maximal pro-l quotient (resp. abelianization) of \square.

Theorem (Nakamura)
Write $\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}$ for the graded Lie algebra over \mathbb{Q}_{l} assoc. to the lower central series of $\Pi_{2}^{(l)}$. Then we have

$$
\operatorname{Aut}\left(\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}\right) \cong \mathfrak{S}_{5} \times \mathbb{Q}_{l}^{\times}
$$

Idea: Using a special property of free prof. gps, reduce to this Thm.

Lemma (Lubotzky-van den Dries)

Let G be a fin. gen. free profinite group of $r k>1$. Then every nontrivial fin. gen. closed normal subgroup of G is open in G.

Lemma (Lubotzky-van den Dries)

Let G be a fin. gen. free profinite group of $r k>1$. Then every nontrivial fin. gen. closed normal subgroup of G is open in G.

Let $\alpha \in \operatorname{Aut}\left(\Pi_{2}\right)$.

Lemma (Lubotzky-van den Dries)

Let G be a fin. gen. free profinite group of rk >1. Then every nontrivial fin. gen. closed normal subgroup of G is open in G.

Let $\alpha \in \operatorname{Aut}\left(\Pi_{2}\right) . \Longrightarrow \widetilde{\alpha} \in \operatorname{Aut}\left(\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}\right) \cong \mathfrak{S}_{5} \times \mathbb{Q}_{l}^{\times}$

Lemma (Lubotzky-van den Dries)

Let G be a fin. gen. free profinite group of $r k>1$. Then every nontrivial fin. gen. closed normal subgroup of G is open in G.

Let $\alpha \in \operatorname{Aut}\left(\Pi_{2}\right) . \Longrightarrow \widetilde{\alpha} \in \operatorname{Aut}\left(\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}\right) \cong \mathfrak{S}_{5} \times \mathbb{Q}_{l}^{\times}$
By replacing α by $\alpha \cdot \beta$ - where $\beta \in \operatorname{Aut}\left(\Pi_{2}\right)$ is a suitable lift. of an $\in \mathfrak{S}_{5} \subseteq \operatorname{Out}\left(\Pi_{2}\right)$ - we may assume WLOG that $\widetilde{\alpha} \in \mathbb{Q}_{l}^{\times}$.

Lemma (Lubotzky-van den Dries)
Let G be a fin. gen. free profinite group of $r k>1$. Then every nontrivial fin. gen. closed normal subgroup of G is open in G.

Let $\alpha \in \operatorname{Aut}\left(\Pi_{2}\right) . \Longrightarrow \widetilde{\alpha} \in \operatorname{Aut}\left(\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}\right) \cong \mathfrak{S}_{5} \times \mathbb{Q}_{l}^{\times}$
By replacing α by $\alpha \cdot \beta$ - where $\beta \in \operatorname{Aut}\left(\Pi_{2}\right)$ is a suitable lift. of an $\in \mathfrak{S}_{5} \subseteq \operatorname{Out}\left(\Pi_{2}\right)$ - we may assume WLOG that $\widetilde{\alpha} \in \mathbb{Q}_{l}^{\times}$.

Let $F=\operatorname{Ker}(p)$ be a generalized fiber subgp, where $p: \Pi_{2} \rightarrow \Pi_{1}$.

Lemma (Lubotzky-van den Dries)

Let G be a fin. gen. free profinite group of $r k>1$. Then every nontrivial fin. gen. closed normal subgroup of G is open in G.

Let $\alpha \in \operatorname{Aut}\left(\Pi_{2}\right) . \Longrightarrow \widetilde{\alpha} \in \operatorname{Aut}\left(\operatorname{Gr}\left(\Pi_{2}^{(l)}\right) \otimes \mathbb{Q}_{l}\right) \cong \mathfrak{S}_{5} \times \mathbb{Q}_{l}^{\times}$
By replacing α by $\alpha \cdot \beta$ - where $\beta \in \operatorname{Aut}\left(\Pi_{2}\right)$ is a suitable lift. of an $\in \mathfrak{S}_{5} \subseteq \operatorname{Out}\left(\Pi_{2}\right)$ - we may assume WLOG that $\widetilde{\alpha} \in \mathbb{Q}_{l}^{\times}$.

Let $F=\operatorname{Ker}(p)$ be a generalized fiber subgp, where $p: \Pi_{2} \rightarrow \Pi_{1}$.
Note: $\Pi_{1} \cong \pi_{1}\left(\mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}\right) \cong \widehat{\mathbb{Z}} * \widehat{\mathbb{Z}} ;$

$$
F \cong \pi_{1}\left(\mathbb{P}_{k}^{1} \backslash\{0,1, \infty, \bullet\}\right) \cong \widehat{\mathbb{Z}} * \widehat{\mathbb{Z}} * \widehat{\mathbb{Z}}
$$

Claim: $\quad \alpha(F)=F$

Claim: $\quad \alpha(F)=F$
We have the following commutative diagram:

Claim: $\quad \alpha(F)=F$
We have the following commutative diagram:

Let us first verify that $\alpha(F) \subseteq F$.

Claim: $\quad \alpha(F)=F$
We have the following commutative diagram:

Let us first verify that $\alpha(F) \subseteq F$.
Suppose that $p(\alpha(F)) \neq\{1\}$.

Claim: $\quad \alpha(F)=F$
We have the following commutative diagram:

Let us first verify that $\alpha(F) \subseteq F$.
Suppose that $p(\alpha(F)) \neq\{1\} . \Longrightarrow$ open in Π_{1} (cf. Lemma)

Claim: $\quad \alpha(F)=F$
We have the following commutative diagram:

Let us first verify that $\alpha(F) \subseteq F$.
Suppose that $p(\alpha(F)) \neq\{1\} . \Longrightarrow$ open in Π_{1} (cf. Lemma)
Since $\widetilde{\alpha} \in \mathbb{Q}_{l}^{\times}$, it hold that $\phi_{1}(p(\alpha(F)))=\{0\}$.

Claim: $\quad \alpha(F)=F$
We have the following commutative diagram:

Let us first verify that $\alpha(F) \subseteq F$.
Suppose that $p(\alpha(F)) \neq\{1\} . \Longrightarrow$ open in Π_{1} (cf. Lemma)
Since $\widetilde{\alpha} \in \mathbb{Q}_{l}^{\times}$, it hold that $\phi_{1}(p(\alpha(F)))=\{0\}$.
$\Longrightarrow \operatorname{Im}\left(\phi_{1}\right)\left(\cong \mathbb{Z}_{l} \oplus \mathbb{Z}_{l}\right)$ is finite, a contradiction!

Finally, we consider an exact sequence

$$
\begin{array}{cc}
1 \longrightarrow F / \alpha(F) \longrightarrow \Pi_{2} / \alpha(F) \longrightarrow \Pi_{2} / F \longrightarrow 1 . \\
\alpha \uparrow 2 & p \downarrow 2 \\
\Pi_{2} / F & \Pi_{1} \\
p \downarrow_{2} & \\
\Pi_{1} &
\end{array}
$$

Finally, we consider an exact sequence

$$
1 \longrightarrow F / \alpha(F) \longrightarrow \Pi_{2} / \alpha(F) \longrightarrow \Pi_{2} / F \longrightarrow 1 .
$$

Therefore, again by Lemma, we conclude that $F / \alpha(F)=\{1\}$.

